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Why Getting a Good Estimate of the Kill 
Probability Requires Many Tests 
 
For a system such as a missile defense in which the outcome 
of a test can be evaluated as either a success (destruction of 
the target) or a failure (the target gets through), the 
probability of each outcome can be described by a binomial 
distribution.  
 The binomial distribution may be familiar; it describes 
situations such as a coin toss, which also has two outcomes: 
heads and tails. The probabilities of heads (p) and tails (q) 
sums to 1.0. (If the coin is unweighted, heads and tails are 
equally likely, so the probability p of heads is 0.5 as is that of 
tails.)  
 For a binomial distribution, the probability P of getting 
exactly k successes (heads, for example) in n trials (coin 
flips) is 
 

𝑃(𝑘) =
𝑛!

𝑘! (𝑛 − 𝑘)!
𝑝𝑘(1 − 𝑝)𝑛−𝑘 

 
 As discussed further below, it’s important to note that 
the binomial distribution holds only if the probability of 
success, p, is the same for every trial and if the trials are 
statistically independent (the outcome of one trial does not 
affect the outcome of the next.)  
 To use the binomial distribution to estimate how 
effective a missile defense system is, one can describe the 
probability of success (the “kill probability”) as p and of 
failure (the “miss probability”) as 1 – p for a single shot.  
Using the binomial distribution, in a set of n incoming 
missiles, each targeted by an interceptor with a kill 
probability p, the probability P that k warheads penetrate the 
defense is:  
 

𝑃(𝑘) =
𝑛!

𝑘! (𝑛 − 𝑘)!
(1 − 𝑝)𝑘(𝑝)𝑛−𝑘 

 
And the probability that no (zero) warheads penetrate the 
defense is 

𝑃(0) = 𝑝𝑛 
 

Therefore, the probability that at least one warhead will get 
through the defense in an attack of n missiles is   
 

1 − 𝑃(0) = 1 − 𝑝𝑛 
 
 For strategic missile defense, the expectation is that the 
system must be highly effective. However, even with a kill 
probability p of 95 percent, the probability that at least one 
warhead will get through in an attack of five missiles (using 
one shot on each incoming missile) is perhaps surprisingly 
high, almost one in four: 
  

1 − 𝑃(0) = 1 − 0.955 = 0.23 
 
 In reality, the GMD system is complex and requires a 
number of major systems not only working well on their own 
but also working well together, and under conditions 
expected to be challenging and variable. Thus, a single shot 
kill probability of 0.95 would be very difficult to achieve.  
 Additionally, this simple approximation, using a single 
value for kill probability and assuming failures are 
uncorrelated is not completely realistic, as the kill probability 
will depend not only on the specific hardware (the 
interceptor variant, for example), but on the conditions under 
which the shot is taken. In addition, there may be sources of 
common error, such as a component that always fails in each 
interceptor or the presence of enemy countermeasures that 
confuse the defense. Also, the presence of one interceptor 
may affect the success of the other interceptors, for example, 
by confusing the sensors with additional signals from the kill 
vehicle’s steering thrusters or debris from the interceptor. 
 
 
Confidence Intervals: How Well Do You 
Know the Value of p? 
 
It is critical not just to have an estimate for the value of p but 
also to understand how good your estimate is, for reasons 
elaborated in the next section. The kill probability p must be 
estimated from tests (and simulations of tests), much in the 
same way one would have to do a number of flips to 
determine whether a coin was weighted to one side or if both 
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sides were equally likely to turn up. The task of determining 
the quality of the estimate is a bit more difficult than one 
might expect. For example, if you flip an unweighted coin 
100 times, and then repeat that process many times, you 
would find that heads would come up exactly 50 times in 
100 flips only about 8% of the time. 
 How many tests do you need to do? The number 
depends both on the underlying p and how well you want to 
know it. As a guide to intuition, we again assume the 
simplest scenario: the tests are performed under the same 
conditions, the underlying p is the same in each trial, and the 
test results are uncorrelated to each other. (This is actually 
not the case for the existing suite of Ground-based 
Midcourse Defense (GMD) tests. For example, the tests did 
not use the same sensor information to determine the 
intercept point, and many different variants and subvariants 
of the interceptor have been used in the 17 intercept tests.) 
 In this simple case, if a set of X successes are observed 
in a set of n tests, the estimated value of the kill probability p 
is p̂ = X/n. The more tests are performed, the closer p̂ will be 
to the true (but unknown) value of p.  
 Without knowing the true value of p, how do you know 
how accurate p̂ actually is? A statistical measure of this is the 
confidence interval, which is the range of values that will 
include the true value of p a given percentage of the times 
that p̂ is estimated from a set of n tests. For example, the 68-
percent confidence interval will contain the true value of p 
68 percent of the times that  p̂ is estimated, and the 95-
percent confidence interval will contain the true value of p 
95 percent of the times that p̂ is estimated using that method. 
The confidence interval will be narrower (will span a smaller 
range of values) the larger the number of tests, n, that have 
been conducted. The size of the confidence interval also 
depends on the underlying probability distribution.  
 While the binomial distribution is simple in form, 
calculating confidence levels for p̂ for this distribution is 
more complex. The simplest approach is the Wald 
approximation: approximating the distribution of errors as 
the same distribution as errors for a normal, or Gaussian, 
distribution. The Wald approximation has the advantage of 
providing an easily calculated form for the confidence 
interval. If zα/2 is the 100(1 – α/2)th percentile of the standard 
normal distribution,  then the area under the standard normal 
curve (centered on zero) to the left of the value zα/2 will be  
(1 – α/2).  Using zα/2 (which can be read off a standard 
normal distribution table) and p̂ = X/n,  the kill probability 
estimate, the 100(1– α)th percent confidence interval 
centered around 𝑝̂ can be found: 
 

𝑝̂ ± 𝑧𝛼/2�
1
𝑛
𝑝̂(1 − 𝑝̂) 

 
 To calculate a two-sided 95-percent confidence interval 
(i.e., the true value is between the upper and lower boundary 
values at the 95-percent confidence level), zα/2 = 1.96. 
 To calculate a one-sided confidence interval, (i.e., the 
true value of p is greater than some value at a given 
confidence level), that value, i.e., the lower bound on the 
confidence interval is:  
 

𝑝̂ − 𝑧𝛼�
1
𝑛
𝑝̂(1 − 𝑝̂) 

 
For a 95% confidence, interval, zα = 1.645.  
 However, the Wald approximation becomes less 
accurate at values of p that are close to 0 or 1, and has some 
complex behavior at other values.1 Other measures of the 
confidence interval have been developed, such as the 
Agresti-Coull approach, which provides better estimates than 
the “normal” distribution approximation, but is still simple in 
form. It is sometimes called “add two successes and two 
failures” because that is how it differs from the Wald 
approximation:  
 

𝑝̂ ± 𝑧𝛼/2�
1
ñ
𝑝̃(1 − 𝑝̃) 

 

                                                           
1 For an overview of interval estimation for the binomial proportion 
and evaluation of different approaches, see Brown, L. T. Cai, and A. 
DasGupta. 2001. Interval estimation for a binomial proportion. 
Statistical Science 16(2):101–117. Online at http://www-
stat.wharton.upenn.edu/~lbrown/Papers/2001a%20Interval%20esti
mation%20for%20a%20binomial%20proportion%20(with%20T.%2
0T.%20Cai%20and%20A.%20DasGupta).pdf. Note: All URLs in 
footnotes to this appendix were accessed May 24–25, 2016. 

http://www-stat.wharton.upenn.edu/~lbrown/Papers/2001a%20Interval%20estimation%20for%20a%20binomial%20proportion%20(with%20T.%20T.%20Cai%20and%20A.%20DasGupta).pdf
http://www-stat.wharton.upenn.edu/~lbrown/Papers/2001a%20Interval%20estimation%20for%20a%20binomial%20proportion%20(with%20T.%20T.%20Cai%20and%20A.%20DasGupta).pdf
http://www-stat.wharton.upenn.edu/~lbrown/Papers/2001a%20Interval%20estimation%20for%20a%20binomial%20proportion%20(with%20T.%20T.%20Cai%20and%20A.%20DasGupta).pdf
http://www-stat.wharton.upenn.edu/~lbrown/Papers/2001a%20Interval%20estimation%20for%20a%20binomial%20proportion%20(with%20T.%20T.%20Cai%20and%20A.%20DasGupta).pdf
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 _____________________________    FIGURE 1.  Nomogram of the cumulative binomial distribution. The two axes on the graph are the number of tests 
   (n) and the number of failures (r). Any straight line that goes through a point on this graph will connect an estimate  
   of the reliability (R), analogous to p̂ in this discussion to confidence level at which it is known. Source: Defense 
   Acquisition University. 
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where the “new” number of trials ñ = n + 4 and the “new” 
estimate of the kill probability is p̃ = (X + 2)/(n + 4). 
 To take an example, if a system had 17 identical tests 
with 8 successes (the record for GMD intercept tests given in 
Shielded From Oversight: Table 1: Ground-based Midcourse 
Defense Intercept Tests 2), the Wald approximation gives an 
estimate of p̂ to be 0.47 ± 0.24 at 95 percent confidence, or 
0.23 <  p̂ < 0.71. The reader should treat these kill 
probability estimates with caution, of course, since the tests 
were not performed under the same conditions, and so were 
not testing the same thing. (See Appendix 7: Testing.) The 
one-sided 95-percent confidence interval for such a test 
record is p̂ > 0.27. The Agresti-Coull 95-percent confidence 
interval estimate for the same test record would be 0.47 ± 
0.21, or that the kill probability p is greater than 0.29 at 95% 
confidence. On the one hand, these kill probability estimates 
quickly tell the observer that the GMD system is not very 
reliable; on the other hand, they also say that the reliability is 
not characterized very well.  
 Another way to present the relationship between the test 
record, estimated reliability, and confidence level is in the 
form of a nomograph or nomogram, a graphical calculating 
diagram. Figure 1 is the nomogram for the cumulative 
binomial distribution.3 The intersection of the lines 
representing the number of tests and number of failures 
produces a point; any straight line through this point will 
connect the value of the reliability with the confidence level 
at which it can be expressed. For example, one can say with 
about 30 percent confidence that a system with nine failures 
in 17 tests has an estimated reliability of at least 0.50, or has 
a chance of hitting a target (under those exact conditions) at 
least 50 percent of the time. 
 To turn the question around the other way, then: how 
many tests (n) are needed to estimate p, the kill probability 
under a specific set of circumstances, to a useful amount of 
precision? While it would take 30 tests without a failure to 
be 95- percent confident that the system was at least 90- 
percent reliable, on the other hand, one can tell the system is 
not very reliable with a relatively few number of tests if they 
fail half the time. 

                                                           
2 The GMD intercept test record from Shielded from Oversight’s 
Table 1 differs from the Missile Defense Agency’s assessment by 
one success. Since the interceptor in FTG-02 struck the target but 
did not destroy it, we do not consider this to be a successful 
intercept test. 
3 This nomograph is sourced from the Defense Acquisition 
University’s Program Manager’s Toolkit, an online set of resources 
derived from classes for Department of Defense staff. Online at 
https://acc.dau.mil/CommunityBrowser.aspx?id=294528.  

One may want to know not just the lower bound to the 
confidence interval. Rather, the two-sided confidence 
interval may be useful, for reasons such as those discussed in 
the next section. The precision D, which is half of the width 
of the confidence interval, can be written using the Wald 
approximation: 
 

𝐷 = 𝑧𝛼/2�
1
𝑛
𝑝̂(1 − 𝑝̂) 

 
It is inverted easily, giving the estimate: 
 

𝑛 = 𝑝̂(1 − 𝑝̂)
𝑧𝛼/2
2

𝐷2  

 
for a level of precision D. So for a two-sided 95- percent 
confidence interval that is 0.20 wide (i.e., the precision D = 
0.10) for an actual underlying kill probability of p = 0.5 (i.e. 
50 percent ), 96 tests would need to be completed. (This 
estimate is fairly consistent with more rigorous methods of 
calculating n.)4 That is, to establish the kill probability’s 95% 
confidence interval is between 0.40 and 0.60, around 100 
tests under the same conditions are necessary, as shown in 
Table 1 below.  
 Note that the precision measure D is half the width of 
the confidence interval, not a percentage of 𝑝̂. So one cannot, 
for example, use this estimate to find the value of 𝑝̂ with a 
precision of D = 0.20 if 𝑝̂ = 0.10 or 0.90. If the actual kill 
probability were much lower or much higher, for example, p 
= 0.10 or 0.90, the number of tests needed would be fewer, 
but still substantial, i.e., 35.   
 

 

 

 

 

                                                           
4 Compare with Table 2 in Krishnamoorthy, K., and J. Peng. 2007. 
Some properties of the exact and score methods for binomial 
proportion and sample size calculation. Communications in 
Statistics—Simulation and Computation 36: 1171—1186. Online at 
www.ucs.louisiana.edu/~kxk4695/com_stat_bin_07.pdf.  

http://www.ucsusa.org/sites/default/files/attach/2016/07/shielded-from-oversight-appendix-7
https://acc.dau.mil/CommunityBrowser.aspx?id=294528
http://www.ucs.louisiana.edu/~kxk4695/com_stat_bin_07.pdf
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 Because live-fire missile defense tests are costly and 
time-consuming to perform, the number of actual intercept 
tests conducted will never be great enough on their own to 
provide high confidence in the estimated kill probability 
under the different circumstances the system is expected to 
perform. Instead, the Missile Defense Agency relies on 
computer simulations, which are anchored by data generated 
in flight testing and ground testing. This approach has 
significant limits (see Chapter 4 of Shielded from Oversight.) 
 The Institute for Defense Analyses, tasked with carrying 
out an assessment of the GMD system, pointed out that the 
Pentagon does not know the system’s reliability very well at 
all and probably will not in the future either. It notes that due 
to the limited number of flight and ground tests there is “a 
significant degree of uncertainty in the estimates of current 
and projected GBI reliability” and that the tests planned for 
the future “are likely to be insufficient by themselves to 
reduce significantly this uncertainty.”5 
 
 

                                                           
5 Institute for Defense Analyses. 2012. IDA’s responses to questions 
on the “Independent review and assessment of the Ground-Based 
Midcourse Defense system. Paper P-4802.” Portions unclassified. 
April 11 

Why a Good Estimate of Kill Probability is So 
Important 
 
For a strategic missile defense system, which is meant to 
defend against nuclear weapons, a robust knowledge of the 
system’s capabilities is necessary for making informed 
decisions about how much it can be relied on in a crisis as 
well as decisions about what kind of resources to invest in it. 
 The kill probability is an important component of 
understanding how many warheads would be expected to 
penetrate the defense in an attack. A useful model for the 
single-shot probability of kill (SSPK) was developed in 
Wilkening6, and the following is adapted from it. 
 The probability that one or more warheads will leak 
through a defense is 1 – P(0), where P(0) = (KW)W is the 
probability that no warheads get through in an attack of W 
warheads, and KW is the kill probability against one warhead. 
KW  depends on the probability, Ptrack, that the system can 
track and identify the target reliably and that it does not have 
common mode failures, as well as on the SSPK, analogous to 
p above. The number of shots taken on a given warhead is n, 
thus the kill probability against one warhead is: 
 

𝐾𝑊 = 𝑃𝑡𝑟𝑎𝑐𝑘(1 − (1 − SSPK)𝑛) 
 
And  

𝑃(0) =  [𝑃𝑡𝑟𝑎𝑐𝑘(1 − (1 − SSPK)𝑛)]𝑊 
 
Assuming for these purposes that 𝑃𝑡𝑟𝑎𝑐𝑘 = 1.0, meaning the 
system has a perfect ability to track and identify targets 
accurately among other objects, then we can investigate how 
the probability that the defense leaks at least one warhead 
depends on the SSPK in different scenarios. (The probability 
that no warheads would get through decreases by a factor of 
𝑃𝑡𝑟𝑎𝑐𝑘

W in this construction.) 
 For example, in the situation in which all 44 of the 
planned GMD interceptors were to be used against a raid size 
of 11 apparent warheads (with four-on-one targeting), a 
defense with perfect 𝑃𝑡𝑟𝑎𝑐𝑘 and an SSPK of 0.50 would let at 
least one warhead through the defense with a probability of 
about 50 percent.  

                                                           
6 Wilkening, D.A. 1999. A Simple Model for Calculating Ballistic 
Missile Defense Effectiveness. Science and Global Security 8(2): 
183-215. Online at 
http://scienceandglobalsecurity.org/archive/2000/01/a_simple_mod
el_for_calculating.html.  

 _____________  
TABLE 1. The number n of tests required to determine 
the kill probability p with a precision D at 95-percent 
confidence, using the Wald approximation. If the 
underlying probability is, for example, p = 0.90, 138 
tests would be required to determine to 95-percent 
confidence that p is between 0.85 and 0.95. 
 
p D n 
0.10 0.05 138 
0.10 0.10 35 
   
0.50 0.05 384 
0.50 0.10 96 
   
0.90 0.05 138 
0.90 0.10 35 

   ___________         

http://scienceandglobalsecurity.org/archive/2000/01/a_simple_model_for_calculating.html
http://scienceandglobalsecurity.org/archive/2000/01/a_simple_model_for_calculating.html
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 If the SSPK were lower than 0.50 —for example, if 
SSPK is equal to the lower limit of the 95-percent confidence 
interval for the set of 17 tests described in the first section of 
the appendix, with SSPK = 0.23—then the defense would 
perform poorly, even using four on one targeting. Indeed, it 
would, with 99-percent probability, let through at least one 
warhead in such an attack. Using an optimistic estimate for 
the SSPK, the upper limit of the confidence interval, 0.71, 
the defense would let at least one warhead through with an 
7.5 percent probability, a very different outcome. Clearly it is 
crucial to know as much as possible about the interceptor’s 
reliability. 
 At present, the actual SSPK is undoubtedly quite low, 
judging from the test record. While using more than one 
interceptor against a target can make up for poor 
performance, this strategy is not effective until the SSPK is 
fairly high. The number of interceptors that can be 
reasonably targeted on a given warhead is not arbitrarily 

high. Wilkening suggests a cap of four-on-one targeting is 
likely and that adding more interceptors may provide 
diminishing returns in a crowded and confusing field.  
In the scenario of an attack of five warheads, it is clear that 
four-on-one targeting cannot make up much ground for 
ineffective interceptors; for an SSPK of 0.25, four-on-one 
targeting will let through at least one warhead 85 percent of 
the time, as shown in Table 2 below. For interceptors with an 
SSPK of 0.50, at least one warhead will get through a fourth 
of the time in such an attack. It is only when the SSPK is 
relatively high that using multiple interceptors on a target can 
provide an effective defense; four-on-one targeting with a 
SSPK of 0.90 will defeat all incoming warheads 95 percent 
of the time. Also note that one-on-one targeting of the highly 
effective system with an SSPK of 0.90 would let through a 
warhead 40 percent of the time in an attack of five warheads. 
 Note that a shoot-look-shoot scheme doesn’t affect the 
probability that warheads survive the defense over simply 
targeting the warhead with multiple interceptors, as long as 
the defense has enough interceptors to fire the desired 
number at each target. What it can do is reduce the number 
of interceptors used to achieve a given effect, and therefore 
conserve a limited inventory for use against future attacks. 
Shoot-look-shoot will not improve the system’s 
effectiveness, but it can improve its efficiency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ________________   
 TABLE 2. The probability that at least one warhead survives 
the defense in an attack of five warheads, given the targeting 
scheme (the number of interceptors targeted on each 
warhead), and the single shot kill probability SSKP. 
  
Targeting scheme Single shot kill 

probability 
Probability at 
least one 
warhead 
survives 

1-on-1 0.10 99.99% 
2-on-1 0.10 99.98% 
4-on-1 0.10 99.5% 
   
1-on-1 0.25 99.90% 
2-on-1 0.25 98% 
4-on-1 0.25 85% 
   
1-on-1 0.50 97% 
2-on-1 0.50 76% 
3-on-1 0.50 49% 
4-on-1 0.50 28% 
   
1-on-1 0.90 41% 
2-on-1 0.90   5% 
4-on-1 0.90   0.05% 
 
 




